





# **Course Specifications**

| Course Title: | Number Theory               |
|---------------|-----------------------------|
| Course Code:  | 30114406-3                  |
| Program:      | BSc. Mathematics 301100     |
| Department:   | Mathematics                 |
| College:      | Al Leith University College |
| Institution:  | Umm Al Qura University      |



# Table of Contents

| A. Course Identification                                                                  | 3        |
|-------------------------------------------------------------------------------------------|----------|
| 6. Mode of Instruction (mark all that apply)                                              | 3        |
| B. Course Objectives and Learning Outcomes                                                | 3        |
| 1. Course Description                                                                     | 3        |
| 2. Course Main Objective                                                                  | 4        |
| 3. Course Learning Outcomes                                                               | 4        |
| C. Course Content                                                                         | 4        |
| D. Teaching and Assessment                                                                | 5        |
| 1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessme<br>Methods | ent<br>5 |
| 2. Assessment Tasks for Students                                                          | 5        |
| E. Student Academic Counseling and Support                                                | 6        |
| F. Learning Resources and Facilities                                                      | 6        |
| 1.Learning Resources                                                                      | 6        |
| 2. Facilities Required                                                                    | 6        |
| G. Course Quality Evaluation                                                              | 7        |
| H. Specification Approval Data                                                            | 7        |



# **A. Course Identification**

| 1. Credit hours:                                                                          |
|-------------------------------------------------------------------------------------------|
| 2. Course type                                                                            |
| a. University College Department Others                                                   |
| b. Required Elective                                                                      |
| <b>3. Level/year at which this course is offered:</b> 7 <sup>th</sup> Level / Fourth Year |
| 4. Pre-requisites for this course (if any): Sets and Algebraic Structures 30112401-4      |
|                                                                                           |
| 5. Co-requisites for this course (if any): None                                           |
|                                                                                           |

## 6. Mode of Instruction (mark all that apply)

| No | Mode of Instruction   | <b>Contact Hours</b>   | Percentage |
|----|-----------------------|------------------------|------------|
| 1  | Traditional classroom | (3 hours) x (15 weeks) | 100%       |
| 2  | Blended               | 0                      | 0%         |
| 3  | E-learning            | 0                      | 0%         |
| 4  | Correspondence        | 0                      | 0%         |
| 5  | Other                 | 0                      | 0%         |

#### 7. Actual Learning Hours (based on academic semester)

| No    | Activity                        | Learning Hours |
|-------|---------------------------------|----------------|
| Conta | et Hours                        |                |
| 1     | Lecture                         | 45 hours       |
| 2     | Laboratory/Studio               | 0              |
| 3     | Tutorial                        | 0              |
| 4     | Others (specify)                | 8 hours        |
|       | Total                           | 53 hours       |
| Other | Learning Hours*                 |                |
| 1     | Study                           | 75 hours       |
| 2     | Assignments                     | 15 hours       |
| 3     | Library                         | 0              |
| 4     | Projects/Research Essays/Theses | 15 hours       |
| 5     | Others (workgroup)              | 0              |
|       | Total                           | 105 hours      |

\* The length of time that a learner takes to complete learning activities that lead to achievement of course learning outcomes, such as study time, homework assignments, projects, preparing presentations, library times

## **B.** Course Objectives and Learning Outcomes

#### **1.** Course Description

This course will provide a detailed introduction to modern abstract number theory, which is a basic part of the language of much of modern mathematics. The course begins by recognizing the fundamental concepts of Primes, Divisibility and the Fundamental Theorem of Arithmetic, and a short reminder of Greatest Common Divisor (GCD), Euclidean Algorithm. Then, it studies the question of congruence and some examples of this concept. In addition, the arithmetic functions are studied. Finally, a brief introduction to cryptography is formatting.

## 2. Course Main Objective

The course is intended to allow students to be exposed to some foundational ideas in number theory without the technical baggage often associated with a more advanced courses. The course provides students an opportunity to develop an appreciation of pure mathematics while engaged in the study of number theoretic results. The course is also designed to provide students an opportunity to work with conjectures, proofs, and analyzing mathematics.

## **3.** Course Learning Outcomes

| CLOs |                                                                                                          | Aligned<br>PLOs |
|------|----------------------------------------------------------------------------------------------------------|-----------------|
| 1    | Knowledge:                                                                                               |                 |
| 1.1  | Define the concepts of divisibility, congruence, greatest common divisor, prime, and prime factorization | K1              |
| 1.2  | State the elementary properties of congruences                                                           | К3              |
| 1.3  | Recall the main properties of arithmetic functions                                                       | K3              |
| 1.4  | Recognize the relation between the continued fraction algorithm and Euclid's algorithm                   | K2              |
| 1.5  | Present briefly introduction of cryptography notion                                                      | K4              |
| 2    | Skills :                                                                                                 |                 |
| 2.1  | Solve problems involving divisibility, prime numbers and Euclidean algorithm                             | S7              |
| 2.2  | Extend the Chinese Remainder Theorem                                                                     | S9              |
| 2.3  | Examine Euler's function and its properties                                                              | S6              |
| 2.4  | Apply techniques to solve linear Diophantine equations                                                   | S5              |
| 2.5  | Derive the representation of an irreducible rational fraction by a simple continued fraction             | S3              |
| 3    | Competence:                                                                                              |                 |
| 3.1  | Evaluate theoretical concepts in number theory to understand real world applications                     | C5              |
| 3.2  | Develop the theories, methods and techniques of the course to solve<br>complex mathematical problems     | C4              |
| 3.3  | Work effectively in teams                                                                                | C1              |

## **C.** Course Content

| No | List of Topics                                                          | Contact<br>Hours |
|----|-------------------------------------------------------------------------|------------------|
| 1  | Primes, Divisibility and the Fundamental Theorem of Arithmetic          | 6                |
| 2  | Greatest Common Divisor (GCD), Euclidean Algorithm                      | 6                |
| 3  | Congruences, Chinese Remainder Theorem, Hensel's Lemma, Primitive Roots | 9                |
| 4  | Quadratic Residues and Reciprocity                                      | 6                |
| 5  | Arithmetic Functions, Diophantine Equations                             | 6                |
| 6  | Continued Fractions                                                     | 6                |
| 7  | Introduction of cryptography                                            | 6                |
|    | Total                                                                   | 45               |

# **D.** Teaching and Assessment

## 1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

| Code | Course Learning Outcomes Teaching Strategies                                                                   |                                        | Assessment Methods                                        |
|------|----------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------|
| 1.0  | Knowledge                                                                                                      |                                        |                                                           |
| 1.1  | Define the concepts of divisibility,<br>congruence, greatest common divisor,<br>prime, and prime factorization | Lecture<br>Tutorials                   | Exams (Quizzes,                                           |
| 1.2  | State the elementary properties of congruences                                                                 | Lecture<br>Tutorials                   | Written and possibly                                      |
| 1.3  | Recall the main properties of arithmetic functions                                                             | Lecture<br>Tutorials                   | of the course. In                                         |
| 1.4  | Recognize the relation between the continued fraction algorithm and Euclid's algorithm                         | Lecture<br>Tutorials                   | compulsory work<br>may be given during<br>the course      |
| 1.5  | Present briefly introduction of cryptography notion                                                            | Lecture<br>Tutorials                   |                                                           |
| 2.0  | Skills                                                                                                         |                                        |                                                           |
| 2.1  | Solve problems involving divisibility,<br>prime numbers and Euclidean<br>algorithm                             | Lecture<br>Individual or group<br>work |                                                           |
| 2.2  | Extend the Chinese Remainder<br>Theorem                                                                        | Lecture<br>Individual or group<br>work |                                                           |
| 2.3  | Examine Euler's function and its properties                                                                    | Lecture<br>Individual or group<br>work | Exams (Quizzes,<br>Midterm and Final).<br>Homework        |
| 2.4  | Apply techniques to solve linear<br>Diophantine equations                                                      | Lecture<br>Individual or group<br>work |                                                           |
| 2.5  | Derive the representation of an<br>irreducible rational fraction by a<br>simple continued fraction             | Lecture<br>Individual or group<br>work |                                                           |
| 3.0  | Competence                                                                                                     |                                        |                                                           |
| 3.1  | Evaluate theoretical concepts in<br>number theory to understand real<br>world applications                     | Lecture<br>Individual or group<br>work |                                                           |
| 3.2  | Develop the theories, methods and<br>techniques of the course to solve<br>complex mathematical problems        | Lecture<br>Individual or group<br>work | Exams (Quizzes,<br>Midterm and Final).<br>Research Essays |
| 3.3  | Work effectively in teams                                                                                      | Lecture<br>Individual or group<br>work |                                                           |

## 2. Assessment Tasks for Students

| # | Assessment task*             | Week Due              | Percentage of Total<br>Assessment Score |
|---|------------------------------|-----------------------|-----------------------------------------|
| 1 | Midterm 1                    | 6 <sup>th</sup> week  | 20 %                                    |
| 2 | Midterm 2                    | 12 <sup>th</sup> week | 20%                                     |
| 3 | Homework + reports + Quizzes | During the semester   | 10%                                     |

| # | Assessment task* | Week Due        | Percentage of Total<br>Assessment Score |
|---|------------------|-----------------|-----------------------------------------|
| 4 | Final exam       | End of semester | 50 %                                    |

\*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

## E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

Each group of students is assigned to a faculty member where he or she will provide academic advising. All faculty members are required to be in their offices outside teaching hours. Each faculty member allocates at least 4 hours per week to give academic advice and to answer to the questions of students about concepts studied during the lectures.

# **F. Learning Resources and Facilities**

| It Bear ming Rebour ceb           |                                                                                                                                                                                                                   |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | Introduction to the Theory of Numbers, 1960 by G.H.; Wright, E.M.<br>Hardy Publisher: Oxford University Press; Fourth Edition edition<br>(1960) Language: English ISBN-10: 0198533101 ISBN-13: 978-<br>0198533108 |
| <b>Required Textbooks</b>         |                                                                                                                                                                                                                   |
|                                   | Elementary Number Theory (Springer Undergraduate Mathematics                                                                                                                                                      |
|                                   | Series) Corrected Edition by Gareth A. Jones; Publisher: Springer;                                                                                                                                                |
|                                   | Corrected edition (July 31, 1998) Language: English ISBN-10:                                                                                                                                                      |
| L                                 | 3540761977 ISBN-13: 978-3540761976                                                                                                                                                                                |
| Essential References<br>Materials | Number Theory October 12, 1994 by George E. Andrews; Publisher:<br>Dover Publications; 1 edition (October 12, 1994) Language: English<br>ISBN-10: 0486682528 ISBN-13: 978-0486682525                              |
|                                   | Modern Algebra: An Introduction 6th Edition, by John R. Durbin                                                                                                                                                    |
| Electronic Materials              | <ul> <li>https://en.wikipedia.org/wiki/Number_theory</li> <li>http://mathworld.wolfram.com/NumberTheory.html</li> </ul>                                                                                           |
| Other Learning<br>Materials       | None                                                                                                                                                                                                              |

## 1. Learning Resources

## 2. Facilities Required

| Item                                                                                                                      | Resources                                                    |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Accommodation<br>(Classrooms, laboratories, demonstration<br>rooms/labs, etc.)                                            | Large classrooms that can accommodate more than 30 students. |
| <b>Technology Resources</b><br>(AV, data show, Smart Board, software,<br>etc.)                                            | Data Show.                                                   |
| Other Resources<br>(Specify, e.g. if specific laboratory<br>equipment is required, list requirements or<br>attach a list) | None.                                                        |

# G. Course Quality Evaluation

| Evaluation<br>Areas/Issues                         | Evaluators     | <b>Evaluation Methods</b> |
|----------------------------------------------------|----------------|---------------------------|
| Effectiveness of teaching and assessment.          | Students       | Direct                    |
| Quality of learning resources.                     | Students       | Direct                    |
| Extent of achievement of course learning outcomes. | Faculty member | Direct                    |

**Evaluation areas** (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

**Evaluators** (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

## **H. Specification Approval Data**

| Council / Committee | Council of the<br>Mathematics Department | The mathematical sciences (college<br>of applied sciences) and the<br>mathematics (Al-Leith University |
|---------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------|
|                     |                                          | College) department s first meeting<br>of the coordinative committee                                   |
| Reference No.       | 4101050782                               | First meeting                                                                                          |
| Date                | Sunday, 17 November 2019                 | Thursday, 17 October 2019                                                                              |

**Department Head** 

1 6

Dr. Ali Hassani

